D R \Lambda P E R

Electrical Characterization of Traditional and Aerosol Jet Printed Conductors under Tensile Strain

Jake Rabinowitz, Gregory Fritz, Mikel Miller, Peter Lewis, Parshant Kumar, Andrew Dineen, Caprice Gray

Motivation

Address current hurdles within flexible and stretchable electronics development:

- How to overcome mechanical mismatch between conductor and dielectric?
- ♦ What happens to electronics and interconnects under stain?
- **Which materials and fabrication methods best tolerate strain?**

Chihaya Adachi & Hajime Nakanotani Lab

Symposium B: Stretchable and Active Polymers and Composites for Electronics and Medicine

Prior Research: Metals Under Tensile Strain

dhaalan at interface in data ah ann

Strong adhesion at interface in data shown

DR **A** PER

Resistance in Conductors Under Strain

$$R = \underline{R_C} + \underline{R_D} = \underline{R_0(1+\varepsilon)^2} + \underline{R_0(1+\varepsilon)^2}$$

Continuous Resistance Increase (material independent)

Lu, APL, 221909, 2007

- Discontinuities include cracks, buckles, losses of adhesion, etc.
- ♦ For ideal conductor, $R_D \rightarrow 0$, $R = R_C$
- Novel addition to previous work:
 α = discontinuity-percolation factor
- α quantifies tendency of
 discontinuities to propagate and
 unify at higher strain

$$\left[\frac{\rho L(1+\varepsilon)}{A}\right] m^{\frac{1}{\alpha(1+\varepsilon)}}$$

Discontinuous Resistance Increase (material dependent)

Cairns, et al., APL, 76, 2000

- R_0 = initial resistance
- ε = engineering strain
- ρ = resistivity of underlying

conductor

- L = characteristic discontinuity length
- A = characteristic discontinuity area
- m = number of discontinuities
- α = discontinuity-percolation factor

Resistance in Conductors Under Strain

$$R = \underline{R_C} + \underline{R_D} = \underline{R_0(1+\varepsilon)^2} +$$

Continuous Resistance Increase (material independent)

Lu, APL, 221909, 2007

m (R,
$$\varepsilon$$
) = $\left\{ \left[\frac{R}{R_0} - (1 + \varepsilon)^2 \right] \frac{R_0 A}{\rho L(1 + \varepsilon)} \right\}^{\alpha(1 + \varepsilon)}$

- \diamond Determine α from m at known R, ε
- Describe microscale phenomenon
- Preference is for α to be close to 1 (no discontinuity percolation)

$$\left[\frac{\rho L(1+\varepsilon)}{A}\right] m^{\frac{1}{\alpha(1+\varepsilon)}}$$

Discontinuous Resistance Increase (material dependent)

Cairns, et al., APL, 76, 2000

- R_0 = initial resistance
- ϵ = engineering strain
- ρ = resistivity of underlying

conductor

- L = characteristic discontinuity length
- A = characteristic discontinuity area
- m = number of discontinuities
- α = discontinuity-percolation factor

Methods and Materials: Sample Preparation

♦ Substrates: PDMS, Kapton

Conductors: Silver (evaporated), Gold (evaporated), Silver ink (printed)

- ♦ Evaporated samples deposited to 100nm target thickness (100-110nm actual thickness) in TEMESCAL electron beam evaporator at P = 2-3 x 10⁻⁷ Torr
- Printed samples deposited in Optomec aerosol jet printer (2µm thickness) and laser sintered

Methods and Materials: Strain Conditions and Data Acquisition

Resistance monitored using 4-wire measurements while stretching in Instron tensile tester at rate of 10% strain/minute

Alligator clips to output from evaporated films

Symposium B: Stretchable and Active Polymers and Composites for Electronics and Medicine

Conductor-Kapton Systems Under Strain

♦ Only continuous resistance increase in gold sample

♦ Evaporated silver superior to printed silver

DRAPER

Evaporated Silver-Kapton After Strain

Scale bar: 100 µm

↔ 1.1 < α < 2.1; exact value not attainable, crack depth unknown **DR** ∧ **PER** ↔ In discontinuous section, adhesion loss led to buckling

Scale bar: 100 µm

Conductor-PDMS Systems Under Strain

- ♦ Significant discontinuity induced resistance across all materials
- ♦ Printed silver completely inelastic
- ♦ Evaporated silver "best"

D R **^** P E R

m (R,
$$\varepsilon$$
) = $\left\{ \left[\frac{R}{R_0} - (1 + \varepsilon)^2 \right] \frac{R_0 A}{\rho L(1 + \varepsilon)} \right\}^{\alpha(1 + \varepsilon)}$

Conductor-PDMS Systems Under Strain

Gold (100nm) on PDMS Silver (100nm) on PDMS

Scale bar: 2 µm

Scale bar: 2 µm

11

↔ AFM (a,b) → discontinuity depth; SEM (c,d) → discontinuity length, width ↔ Qualitative inspection supports quantitative α determination

DRAPER
$$m(R,\epsilon) = \left\{ \left[\frac{R}{R_0} - (1+\epsilon)^2 \right] \frac{R_0 A}{\rho L(1+\epsilon)} \right\}^{\alpha(1+\epsilon)}$$

Printed Silver

- After inspecting post-strained printed silver samples, there were no discernible discontinuities
- Initial resistivity 10x bulk silver resistivity
- Current additive manufacturing techniques have intrinsic discontinuities

Scale bar: 1 µm

Applying tensile strain intensifies discontinuities; lower modulus polymer does as well

Applying small strain and returning polymer to initial length restores resistance to R₀

Conclusions

- Evaporated metals are likely more tolerant to tensile strain than any additively manufactured conductor
- Developed model to describe conductor resistance during strain
- Validated model via experimental and qualitative analysis as way to describe microscopic phenomenon with easily attainable data
- Achieved through α material dependent "discontinuity percolation factor" (e.g. propagation of cracks, delamination, buckles, etc.)

Acknowledgements

The work was funded by C. S. Draper Laboratory

I would like to thank the following individuals, without whom the work could not have been completed: Brian Smith, Peter Standley, Joseph Louis, Joseph Ricker, Abigail Spencer

Conductor-Polymer Systems Under Tensile Strain

♦ Unstretched state:
$$R_0 = \frac{\rho L_0}{A_0}$$
♦ Stretched state: $R = \frac{\rho L}{A}$
 $\stackrel{R}{\longrightarrow} \frac{R}{R_0} = \left(\frac{L}{L_0}\right)^2 = (1 + \varepsilon)^2 = R_C$
♦ Assuming volume maintained: $AL = A_0L_0$

R_D: Discontinuity Induced Resistance

ITO under tensile strain

$$R_D = \frac{\rho \lambda^2}{V} \sum_{i=1}^m (\varepsilon - \varepsilon_{ci})^2$$

Cairns, et al., APL, 76, 2000

Problems:

- All ITO discontinuities were cracks that traversed the width of the film
- 2. Rapid loss of electrical continuity

Solutions:

- 1. More adaptable
- α = "discontinuitypercolation factor"

Conductor-polymer systems under tensile strain

$$R_D = \left[\frac{\rho L(1+\varepsilon)}{A}\right] m^{\frac{1}{\alpha(1+\varepsilon)}}$$

- R_D = discontinuity induced resistance m = number of discontinuities
- ρ = resistivity of underlying conductor
- λ = length scale of discontinuity
- ϵ = strain
- ϵ_{ci} = strain at initiation of discontinuity 'i'
- V = volume of underlying conductor
- L = characteristic discontinuity length
- A = characteristic discontinuity area
- α = discontinuity-percolation factor